
DSP Wireless, Inc. Application Programming Interface

©	DSP	Wireless,	Inc.	2017,	All	Rights	Reserved.														www.dspw.io																			v0.14		Aug	18,	2017	 	 	 	 												 1

Application	Programming	Interface	
The purpose of this document is to specify the programming interface for the RCB-LVDS
802.11n 2.4 GHz Wi-Fi wireless electrophysiology data acquisition module. The scope of
this document encompasses the commands to the module, reading status from the module,
and format of the data stream from the module. Example Matlab® and Octave
(www.gnu.org/software/octave) commands are provided.

This document assumes that the module has been configured properly as a station on the
local network (see RCB-LVDS User Manual). Communication with the module on the
network is accomplished using TCP/IP, HTTP, and UDP. Throughout this document, it is
assumed that the address of the module on the network is 192.168.1.93. The user may
change this address using the web interface as described in the RCB-LVDS User’s Manual.

The RCB-LVDS module is intended to be interfaced with Intan Technologies RHD2000 series
interface chips.

Operational	Concept	
The RCB-LVDS module provides a network interface for an Intan Technologies RHD2000
series electrophysiology interface chip. Multiple modules may exist on the network (with
distinct IP addresses) and will operate independently. Status is read from a module by
HTTP request. Commands are sent to the module by HTTP Post requests. Data is streamed
from the module via UDP. There is no requirement that the UDP destination be the same
computer as that from which commands are sent; neither is there a requirement that all
commands originate from the same computer.

The two basic modes of the module are Idle and Streaming. Switching between the two
modes is accomplished by HTTP Post command. Some status functions are different when
in the two modes, and some commands are available only in one mode or the other.

Data streaming is the principal purpose of the RCB-LVDS system. Careful attention has
been applied in the design of the module and operation to ensure consistent deterministic
sample rates of the channels. The module streams data by composing a repeating
sequence of RHD2000 conversion commands that is continuously sent to the RHD2000. The
sequence consists of two slots reserved for auxiliary commands, followed by one amplifier
conversion command for each enabled channel. Disabled channels are not converted. The
entire group of commands (sequence) is sent within one analog-to-digital conversion
sample period. If the sample rate is 20460 Hz, the conversion commands all take place
within the sampling period Ts = 48.875 us.

The two auxiliary command slots are themselves composed of sequences, each consisting of
60 commands (programmable by the application). These aux command sequences typically
consist of reading auxiliary ADC channels on the RHD2000, temperature, supply voltage, or
the read-only registers. These auxiliary sequences cycle every 60 Ts seconds.

DSP Wireless, Inc. Application Programming Interface

©	DSP	Wireless,	Inc.	2017,	All	Rights	Reserved.														www.dspw.io																			v0.14		Aug	18,	2017	 	 	 	 												 2

	

Sample	Rate	Determination	
During streaming, a 16-bit channel sample requires 200 ns + 16.5 bit clock periods. The
total number of channel samples per sequence is the number of enabled channels plus two
auxiliary time slots. Thus, for 32 enabled channels, the number of time slots per sample
period is 32+2 = 34. The total time per sample frame is 34 x (200 ns + 16.5 bit clocks) =
6800 ns + 561 bit clocks. If the bit clock is 13333333 bits per second, the effective channel
sample period is 48.875 us; the rate is 20460.4 samples per second; that is, all channels
are sampled at a rate of 20460.4 sps.

The SPI clock is derived from a 40 MHz oscillator. The SPI bit clock is limited to integer
divisions by at least 3 of this 40 MHz clock: 13.3 MHz, 10 MHz, 8 MHz, 6.67 MHz, etc.

Aux data and Vdd are transmitted in the extra 2 time slots. 	

DSP Wireless, Inc. Application Programming Interface

©	DSP	Wireless,	Inc.	2017,	All	Rights	Reserved.														www.dspw.io																			v0.14		Aug	18,	2017	 	 	 	 												 3

Status	
The RCB-LVDS module runs an HTTP server at port 80. Status of the module is obtained by
requesting a document from the server with a standard HTTP request.

http://192.168.1.93/intan_status.html

The response is not a static file, but is dynamic newline-delimited (‘\n’) 8-bit text that is
generated by the module at the time of the request. Not all lines are used in this
application. An example is shown in Table I.

Table I. Typical intan_status.html response.

Line
Numbe

r

Sample Text Response from RCB-LVDS Comment

1 Rev: 1383 Modified 2017/06/16 13:42:06 Revision
Informatio
n

2 1382:1383 Mixed revision WC COMPILED:2017/06/20 08:29:55

3 Unknown Token Reserved
4 ffffffff 6 Channel

Mask and
Aux Mask,
Hex

5 Voltage is 3.300000 Battery
Voltage

6 Unknown Token Reserved
7 Unknown Token Reserved
8 Unknown Token Reserved
9 e800e900ea00eb00ec00fc00fd00fe00ff005000500000000000000000

000000
Intan
Read-Only
Registers
Contents

10 192.168.1.148:5001 UDP
Stream
Destination
Address:Po
rt

11 4 Tx Power
Amp
Backoff, dB

12 13333333 SPI Clock
Rate

A Matlab® or GNU Octave command to read the status is as follows:

[s, status] = urlread('http://192.168.1.93/intan_status.html')
The text will appear in Matlab variable ‘s’. The status can also be read within a browser
simply by entering the URL.

DSP Wireless, Inc. Application Programming Interface

©	DSP	Wireless,	Inc.	2017,	All	Rights	Reserved.														www.dspw.io																			v0.14		Aug	18,	2017	 	 	 	 												 4

Lines	1	and	2:	Revision	
These lines report firmware revision information.

Line	4:	Channel	/	Aux	Masks	
This line reports the current amplifier channel mask and auxiliary channel mask, in little-
endian hexadecimal, separated by a space (0x20). The 32 possible amplifier channels are
each represented by a bit in this mask; channel 0 is in the lsb, channel 31 is in the msb. If
the bit is set, then that channel is sampled and its data is sent in the UDP stream. If a bit is
clear, then that channel is not sampled and no data for that channel is sent in the UDP
stream.

The auxiliary channel mask should always be 6, indicating two channels of auxiliary data,
enumerated 1 and 2.

Line	5:	Battery	Voltage	
Unregulated battery voltage is measured at the time of the HTTP status request, reported in
volts. (This is a separate mechanism from the Supply Voltage Sensor on the RHD2000,
channel 48.)

Line	9:	Intan	Read-Only	Registers	
If the module is in the Idle mode, then the Intan chip is powered-up and the read-only
registers are read in the following order, then powered down:

40, 41, 42, 43, 44, 60, 61, 62, 63

The results are reported in 16-bit (4-digit) hexadecimal format with no delimiters. The first
eight hex digits are flush digits from the RHD2000 and should be ignored by the application.
See RHD2000 data sheet for more information.

If the module is in Streaming mode, the results of the most recent read-only operation are
reported, rather than issuing a new sequence to the RHD2000 chip, which would disrupt the
streaming sequence.

Line	10:	UDP	Destination	
This is the currently programmed UDP destination IP address and port number. The module
will send streaming data to the port at this address.

Line	11:	TX	Power	Amp	Backoff	
This is the current power backoff of the Wi-Fi power amplifier, in dB (i.e. attenuation).
Maximum transmit power is at 0 dB backoff, minimum is at 15 dB backoff. Recommended
value for best battery conservation and data integrity is 4 dB backoff. At 0 dB backoff,
transmit power is roughly +14 dBm.

DSP Wireless, Inc. Application Programming Interface

©	DSP	Wireless,	Inc.	2017,	All	Rights	Reserved.														www.dspw.io																			v0.14		Aug	18,	2017	 	 	 	 												 5

Line	12:	SPI	Clock	Rate	
This is the currently programmed SPI clock rate (bits per second) for communication with
the RHD2000. Maximum value for proper operation is 13333333 bps.

Lines	3,	5,	6,	7,	8:	Unused	/	Reserved	
These lines are reserved for future use, and should be ignored by the application. The
literal response is “Unknown Text\n”, including the newline character (hex 0x0A).

	

Commands	

Command	Format	
All commands to the RCB-LVDS module are text sent by HTTP Post method. The examples
all use the Matlab® or GNU Octave urlread function.

SPI	Stream	On/Off	
To turn the SPI stream on, use the following HTTP Post method:

 [s, status] = urlread('http://192.168.1.93', 'post', ...
 {'__SL_P_ULD', 'ON'});
This command will power up the RHD2000 chip, send the previously specified (by other post
methods) initial register settings, perform a calibration, then begin streaming the amplifier
channel data and auxiliary channel sequence data at the specified SPI bit rate. This
command also performs the required 100 us delay between power-up and programming,
and the required 100 us delay between programming and calibration.

To turn the SPI stream off, use the following HTTP Post method:

 [s, status] = urlread('http://192.168.1.93', 'post', ...
 {'__SL_P_ULD', 'OFF'});
This command will stop the streaming of data and power-down the RHD2000.

Set	Channel	Masks	
This command sets the channel and auxiliary masks. This command determines which
channels are sampled as well as what is actually sent over the UDP link. The format of the
masks is hexadecimal digits, 8 digits representing 32 amplifier channels, little endian, and
one representing auxiliary sequences. Auxiliary channel mask must be set to 6 for proper
operation. Example: enable channels 0 through 17, and auxiliary sequences 1 and 2:

 [s, status] = urlread('http://192.168.1.93', 'post', ...
 {'__SL_P_U00', '3ffff 6'});
 	

DSP Wireless, Inc. Application Programming Interface

©	DSP	Wireless,	Inc.	2017,	All	Rights	Reserved.														www.dspw.io																			v0.14		Aug	18,	2017	 	 	 	 												 6

Set	Auxiliary	Channel	Sequence	
This command is used to configure the sequence of commands written to the RHD2000
during an auxiliary slot while streaming. Format for string:

 nkkdddddddddddddddddddddddddd...

 where:

 n is the aux sequence number to be assigned (0, 1, 2)

 kk is the (decimal) index into the sequence (00, 01, ..., 59)

 dddddd... is the value to assign into the array, possibly more than one, 4 hex
digits, no whitespace separators.

A maximum of fifteen 4-digit hex words can be programmed with a single Post. Example:
program the sequence 0x1200, 0x1300, 0x1400 to sequence 2, beginning at index 7:

 [s, status] = urlread('http://192.168.1.93', 'post', ...
 {'__SL_P_U01', '207120013001400'});

The sequence length is fixed at 60 time slots before repeating (see User’s Manual). Thus, to
fully populate a sequence, a minimum of four calls must be made to this method.

Note: For compatibility with the GUI and Intan Technologies wired system, the sequence
must be offset by one slot: index 00 of the desired sequence must be programmed to the
second element in the sequence (01); the last index (59th) of the desired sequence must be
programmed to the first element in the sequence (00).

Set	UDP	Destination	
This command sets the destination IP address and port number to use for the next UDP
streaming operation. The format is n.n.n.n:p, where n is a decimal number 0 through 255
inclusive, and p is a decimal number. Example: program the destination address to port
1234 at address 192.168.1.222:

 [s, status] = urlread('http://192.168.1.93', 'post', ...
 {'__SL_P_UUU', '192.168.1.222:1234'});

Set	Wi-Fi	Transmit	Power	Level	
This command sets the Wi-Fi transmit power backoff. This is an attenuation level in dB,
such that increasing numerical value is decreasing power. Optimal battery life is achieved
with a value of 4. Valid range is from 0 to 15. Example: set backoff to 4 dB:

 [s, status] = urlread('http://192.168.1.93', 'post', ...
 {'__SL_P_UPA', '4'});

DSP Wireless, Inc. Application Programming Interface

©	DSP	Wireless,	Inc.	2017,	All	Rights	Reserved.														www.dspw.io																			v0.14		Aug	18,	2017	 	 	 	 												 7

Set	SPI	Bit	Rate	
This command sets the requested SPI bit rate to use during streaming, in bits per second.
Actual bit rate will be an integer division of 40 MHz. Do not program a bit rate faster than
40x106 / 3 = 13333333. Example: set bit rate to 13333333 bits per second.

 [s, status] = urlread('http://192.168.1.93', 'post', ...
 {'__SL_P_URB', '13333333'});
The application may control this value in combination with the channel mask to select a
channel sample rate. See section “Sample Rate Determination.”

Set	Intan	Initialization	String	
This command can be used to explicitly set the initialization command sequence sent to the
RHD2000 chip on power-up that is programmed to registers 0 through 21. The format for
the string is two hex digits for each register, up to a total of 44 characters. Example:
specify register contents for registers 0 through 21 as: 0xde, 0x02, 0x04, 0x02, 0x9c, 0x00,
0x00, 0x00, 0x16, 0x00, 0x17, 0x00, 0x10, 0x7c, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00,
0x00:

 [s, status] = urlread('http://192.168.1.93', 'post', ...
 {'__SL_P_UII', 'de0204029c00000016001700107cffffffff00000000'});

	

Reboot	Module	
This command will reboot the RCB-LVDS module. Example: reboot module.

 [s, status] = urlread('http://192.168.1.93', 'post', ...
 {'__SL_P_UBB', 'reboot'});

	

Set	Digital	Input	
The streaming data packets contain fields for 16 bits of digital input state. Use this Post
method to manipulate the states during streaming. The digital channels are one bit each,
enumerated 0 through 15. When represented as a group, they are arranged in little-endian
order.

Assign	All	Bits	
Mxxxx

This command assigns the value of all 16 bits at once, using four hexadecimal digits, little
endian. Example: set digital inputs 3 and 12 through 15, clear all other bits.

 [s, status] = urlread('http://192.168.1.93', 'post', ...
 {'__SL_P_UDI', 'Mf008'});

DSP Wireless, Inc. Application Programming Interface

©	DSP	Wireless,	Inc.	2017,	All	Rights	Reserved.														www.dspw.io																			v0.14		Aug	18,	2017	 	 	 	 												 8

Toggle	Bits	
Xxxxx

This command toggles selected bits, using four hexadecimal digits. Example: toggle digital
inputs 3 and 12 through 15, don’t change all other bits.

 [s, status] = urlread('http://192.168.1.93', 'post', ...
 {'__SL_P_UDI', 'Xf008'});

Or	Bits	
Oxxxx

This command sets selected bits, using four hexadecimal digits. Example: set digital inputs
3 and 12 through 15, and leave all others unchanged.

 [s, status] = urlread('http://192.168.1.93', 'post', ...
 {'__SL_P_UDI', 'Of008'});
Note: The command character is upper case ‘O’, hex 0x4f.

And	Bits	
Axxxx

This command clears selected bits, using four hexadecimal digits. Example: clear all inputs
except 3 and 12 through 15.

 [s, status] = urlread('http://192.168.1.93', 'post', ...
 {'__SL_P_UDI', 'Af008'});

Set	Bit	
Sdd

This command sets one selected bit. Example: set digital input 3.

 [s, status] = urlread('http://192.168.1.93', 'post', ...
 {'__SL_P_UDI', 'S3'});

Clear	Bit	
Cdd

This command clears one selected bit. Example: clear digital input 12.

 [s, status] = urlread('http://192.168.1.93', 'post', ...
 {'__SL_P_UDI', 'C12'});

Toggle	Bit	
Tdd

This command toggles one selected bit. Example: toggle digital input 15.

 [s, status] = urlread('http://192.168.1.93', 'post', ...
 {'__SL_P_UDI', 'T15'});

DSP Wireless, Inc. Application Programming Interface

©	DSP	Wireless,	Inc.	2017,	All	Rights	Reserved.														www.dspw.io																			v0.14		Aug	18,	2017	 	 	 	 												 9

Data	Stream	Packets	
Data is streamed from the module to the UDP server in packets, and every packet has a
header that describes the packet content. UDP packet delivery over the network is not
guaranteed, but the header contains sufficient information to enable the UDP server
(Application) to maintain synchronization with the module, even if some data will be missing
due to lost packets.

Packet length is dynamic depending on the parameters, but is limited to no more than 1480
bytes, including header. The exact number of data and ordering are completely specified in
the header of each packet.

It is important to note that while packet contents may change from one packet to the next,
the packet header structure will always accurately describe the contents.

Header	Structure	
The header structure is shown in Fig. 1.

Fig. 1. UDP packet header structure.

The fields are described below, with offsets specified in bytes. Note that multi-byte fields
are stored little-endian.

/*
 * Structure for UDP packet data header
 */
typedef struct udpHdr{
 uint8_t magic; // = 0xc5, magic number to identify this packet type
 uint8_t sod; // offset into this packet for start of data
 uint8_t mac[6]; // mac address of data source
 uint32_t sn; // sequence number of this packet
 uint64_t reserved; // reserved field
 uint32_t spiBitRate; // actual bit rate programmed to SPI interface
 uint32_t chanMask; // bitmask of channels in this packet
 uint8_t auxMask; // bitmask of aux channels in this packet

// number of samples per interval is bitcnt
(chanMask) + bitcnt(auxMask)

 uint8_t auxPhase; // sample phase of aux channel sequence
 uint16_t numTs; // number of sample periods in this packet

// total number of 16-bit samples in this packet is
numTs * (num chan + aux)

 uint16_t vbat; // latest battery voltage
 uint16_t digIn; // state of digital input bits (IR, GPIO)
} udpHdr_t;

#endif /* SPI_PP_H_ */

DSP Wireless, Inc. Application Programming Interface

©	DSP	Wireless,	Inc.	2017,	All	Rights	Reserved.														www.dspw.io																			v0.14		Aug	18,	2017	 	 	 	 												 10

Offset	0:	magic	
This byte is always 0xC5 to identify the packet type.

Offset	1:	Start	of	Data	
This byte contains the offset within this packet of the start of data. Nominal value is 36.
Application should always use the value of this field to begin parsing data.

Offset	2:	MAC	of	Source	
These six bytes contain the MAC address of the module that generated the packet.

Offset	8:	Sequence	Number	
This 32-bit unsigned integer is the sequence number of the packet. The module increments
this number by one every packet, and it can be used by the application to detect if / how
many packets have been lost. This counter restarts at 0 for every new Streaming request.

Offset	20:	SPI	Bit	Rate	
This 32-bit unsigned integer field reports the actual SPI clock rate used to generate the
packet data, in units of bits per second.

Offset	24:	Amplifier	Channel	Mask	
This 32-bit field indicates which amplifier channels are present in this packet.

Offset	28:	Auxiliary	Slot	Mask	
This 8-bit field indicates which auxiliary slots are present in this packet.

Offset	29:	Start	Phase	of	Auxiliary	Sequence	
The auxiliary channel slots are sequences that span 60 sample periods, programmed by the
application. This 8-bit field indicates the index into this sequence (0 – 59) of the first
occurrence of an auxiliary slot sample in this packet.

Offset	30:	Number	of	Sample	Periods	in	this	Packet	
This 16-bit unsigned integer field indicates how many sample periods are represented in this
packet.

Offset	32:	Unregulated	Battery	Voltage	
This 16-bit unsigned integer reports the latest value of the unregulated battery voltage on
the module. Conversion to volts is accomplished by the following operation:

float b = (0xfff & (p->vbat >> 2)) * 1.467 / 4096 * 62.0 / 15.0;

Offset	34:	Digital	Input	State	
This 16-bit field reflects the state of the digital input bits at the end of the epoch
represented by this packet. The digital input bits therefore have a time resolution of numTs
sample periods.

DSP Wireless, Inc. Application Programming Interface

©	DSP	Wireless,	Inc.	2017,	All	Rights	Reserved.														www.dspw.io																			v0.14		Aug	18,	2017	 	 	 	 												 11

Data	Format	
All the data are 16-bit words, little-endian. The data begins at byte offset p->sod in the
packet, and consists of p->numTs groups. Each group has the same order and format, and
there are no separators between groups.

Fig. 2. Illustration of data, sequence of groups for auxMask = 6, chanMask = 0xFFFFFFFF.
The group consists of 34 words, or 68 bytes.

Fig. 3. Illustration of data, sequence of groups for auxMask = 6, chanMask = 0xC0000083.
The group consists of 7 words, or 14 bytes.

Group	Structure	
Each group is comprised of auxiliary slots followed by amplifier channel slots. The group is
completely specified by the auxiliary mask and channel mask.

Auxiliary	Slots	
The auxiliary slots are specified by the auxiliary mask value (p->auxMask). One datum is
present for each set bit in p->auxMask, in order from lsb to msb. Thus, if the p->auxMask
is 6 (01102), then the first datum in the group is from auxiliary sequence 1, and the second
datum is from auxiliary sequence 2. (Recall that auxiliary slots are selected from 60-
element sequences. All auxiliary slots are synchronized with the same phase, p->auxPhase.
Successive groups have consecutive auxiliary phases.)

AUX	1 AUX	2 AMP	0 AMP	1 AMP	30 AMP	31 AUX	1

Group,
Aux	Phase	n

Group,
Aux	Phase	n+1

AUX	2

n n n+1 n+1

AUX	1 AUX	2 AMP	0 AMP	1 AMP	30 AMP	31 AUX	1

Group,
Aux	Phase	n

Group,
Aux	Phase	n+1

AUX	2

n n n+1 n+1

AMP	7

DSP Wireless, Inc. Application Programming Interface

©	DSP	Wireless,	Inc.	2017,	All	Rights	Reserved.														www.dspw.io																			v0.14		Aug	18,	2017	 	 	 	 												 12

Amplifier	Channel	Slots	
The amplifier channel slots are specified by the amplifier channel mask value (p-
>chanMask). One datum is present for each set bit in p->chanMask, in order from lsb to
msb. Thus, if p->chanMask is 0xffffffff, then the first datum after any auxiliary data is
amplifier channel 0; the second datum is amplifier channel 1; etc., the 32nd datum is
amplifier channel 31.

