
DSP Wireless, Inc. RCB-LVDS Application Note – AP2

©	DSP	Wireless,	Inc.	2017								 									www.dspw.io	 	 	 	 												

1

Application	Note:	Digital	Input	
The purpose of this application note is to describe usage of the network-based digital input
function with the RCB-LVDS module.

	

Introduction	
The RCB-LVDS module is often used in systems in which synchronization or time stamps
with respect to other system components is necessary. In wired systems, it has been
customary to directly wire additional digital indicators into the data acquisition module. This
presented no great burden to the experimenter, since a few more wires or cables were of
little consequence.

The new degree of freedom available with the RCB-LVDS in which the test subject is no
longer tethered by data acquisition cabling also presents a new difficulty: synchronization
with other system components. It is still possible, of course, for the RCB-LVDS module to
potentially accept auxiliary wired inputs to the RHD2000, but doing so erases the purpose of
using the wireless data acquisition.

This application note describes the network-based digital input function available with the
RCB-LVDS module that can be used to help synchronize data acquisition with other system
components.

Other methods of time synchronization are under development. In particular we are
experimenting with NTP time servers.

	
 	

DSP Wireless, Inc. RCB-LVDS Application Note – AP2

©	DSP	Wireless,	Inc.	2017								 									www.dspw.io	 	 	 	 												

2

Use	Case:	Synchronization	with	External	Devices	
Consider the system in Fig. 1, consisting of a test subject, and a source of external sensory
stimulation. The objective of the experiment is to collect electrophysiological data from the
test subject in response to the sensory stimulation.

	
Fig. 1. Example test setup with external sensory stimulation.

The sensory stimulation is under the control of a computer. The experiment management
software on the control computer controls the stimulation sequence and pattern. When the
stimulation changes, the fact can be registered in the acquisition data stream using the
Digital Input function of the RCB-LVDS module.

There are sixteen (16) digital input bits that are under user control. The user can
manipulate any single or combination of bits with each HTTP post command. The digital
input bit states appear in the GUI, and in the recorded data. In this example, we will
choose digital input number 5 to indicate a change in stimulus.

The digital input manipulation commands are documented in the RCB-LVDS API. We use
Set and Clear bit commands.

Test	
subject

RCB-LVDS

WiFi
Access	
Point

Stimulation
ControllerSensory

Stimulation

HTTP
Digital
Input

Streamed
EP	Data

DSP Wireless, Inc. RCB-LVDS Application Note – AP2

©	DSP	Wireless,	Inc.	2017								 									www.dspw.io	 	 	 	 												

3

Assume that the RCB-LVDS module IP number is 192.168.0.93.

Pseudo code might look like this:

In Matlab® the command would look like this:

In Qt the command might look like this:

Control Stimulus “on”

Set Digital In 5

Control Stimulus “off”

Clear Digital In 5

% Control the Stimulus “on” with a Matlab Command

% Set Digital In 5
[s, status] = urlread('http://192.168.1.93', 'post', ...
 {'__SL_P_UDI', 'S5'});

% Control the Stimulus “off” with a Matlab Command

% Clear Digital In 5
[s, status] = urlread('http://192.168.1.93', 'post', ...
 {'__SL_P_UDI', 'C5'});

DSP Wireless, Inc. RCB-LVDS Application Note – AP2

©	DSP	Wireless,	Inc.	2017								 									www.dspw.io	 	 	 	 												

4

	

	
The Qt example code is part of the Qt GUI. It will be released Open Source when finished.

 	

// RCB-LVDS Control Object
Http *controlHttp = new Http;

// Tell controlHttp object the IP address of our RCB-LVDS module
controlHttp->setRcblvdsIP(“192.168.0.93”);

// Control the Stimulus “on”
…
// Set Digital In 5
controlHttp->setDigInBit(5);

// Control the Stimulus “off”
…
// Clear Digital In 5

controlHttp->clearDigInBit(5);

DSP Wireless, Inc. RCB-LVDS Application Note – AP2

©	DSP	Wireless,	Inc.	2017								 									www.dspw.io	 	 	 	 												

5

	

Use	Case:	Multiple	Stimulation	Modes	
Suppose the experiment involves two or more stimulation modes or phases. Multiple Digital
Input bits can be used to indicate these phase changes. For example, two bits can be used
to indicate four separate states. Two new methods could be implemented in http.cpp:

Another way this can be used is the case in which two or more separate stimuli are
generated by separate means. In this case, each stimulator can control a separate Digital
Input bit without interfering with the others.

// Set some bits without affecting others
// mask is hexadecimal
void Http::setDigInBits(int mask)
{
 qDebug() << "Setting Bits " << chan << postToken("__SL_P_UDI", "O" +
QString::number(mask,16));
// NOTE: The command is capital letter “o”, as in “OR”, not a zero!

}

// Clear some bits without affecting others
// mask is hexadecimal
void Http::clrDigInBits(int mask)
{
 qDebug() << "Clearing Bits " << chan << postToken("__SL_P_UDI", "A" +
QString::number(~chan,16));

}

DSP Wireless, Inc. RCB-LVDS Application Note – AP2

©	DSP	Wireless,	Inc.	2017								 									www.dspw.io	 	 	 	 												

6

Implementation	Details	
There are two parameters of interest to the user regarding the digital input bits: resolution,
and latency. Resolution is the effective sample rate of the digital input bits, and is always
less than the system sample rate. Latency is the time lag between when the http POST
command is issued from the user’s control application to when it actually appears in the
data stream. These concepts are discussed separately.

Resolution	
The state of the Digital Input bits is reported once for each data packet from the RCB-LVDS.
Thus, the time resolution is variable depending on number of enabled channels and sample
rate. Regardless of the time resolution, the GUI produces digital input data files with the
same time grid as the analog channels, the state of the Digital Input being held constant
until a change is registered. Listed in the table below are several examples, and the
associated time resolution of the Digital Input bits.

Table I. Digital Input sample rates (Resolution) for various system sample rates and number
of enabled channels.

Sample Rate Number of
Enabled
Channels

Packet Time,
Resolution of
Digital Inputs

20 kHz 32 1 ms
15 kHz 32 1.5 ms
10 kHz 32 2.2 ms
30 kHz 16 1.2 ms
25 kHz 16 1.5 ms
20 kHz 16 2.0 ms
10 kHz 16 3.8 ms

Because of the time resolution, multiple commands to set, clear, or toggle a Digital Input
within a single packet period will not be reflected to the output, and only the last state will
appear.

Latency	
When an http POST command is issued by the user’s application, it must traverse the
network layers in the user’s computer, routed through the network nodes, and finally arrive
at the RCB-LVDS. The real time delay from application to RCB-LVDS is called latency. This
latency depends heavily on the amount of traffic on the network, the quality of the network
devices (routers, etc.), and other factors. These inherent delays in the control computer
and network are sometimes variable. Testing with a specific experiment configuration is
recommended. Latencies of one to two milliseconds have been observed, up to as much as
several tens of milliseconds.

DSP Wireless, Inc. RCB-LVDS Application Note – AP2

©	DSP	Wireless,	Inc.	2017								 									www.dspw.io	 	 	 	 												

7

	

Conclusion	
We have shown the usage of the network-based digital input function with the RCB-LVDS
module to wirelessly coordinate time stamps with respect to other system components.
This application note describes the network-based digital input function available with the
RCB-LVDS module that can be used to help synchronize data acquisition with other system
components. Considerable flexibility is provided to the user, and the user is referred to the
API for more information.

 	

DSP Wireless, Inc. RCB-LVDS Application Note – AP2

©	DSP	Wireless,	Inc.	2017								 									www.dspw.io	 	 	 	 												

8

Appendix	

http.cpp	from	GUI	(fragment)	
The following code snippet is from the RCB-LVDS GUI. See the code base for the complete
class. The RCB-LVDS GUI is open-source.

/*
 * http.cpp
 *
 * This class handles http communication with RCB-LVDS module.
 *
 */

#include "http.h"
#include <QObject>
#include <QUrl>
#include <QUrlQuery>
#include <QNetworkRequest>
#include <QNetworkReply>
#include <QThread>
#include <QHostInfo>
#include <QNetworkInterface>
#include <QList>
#include <QProcess>
#include <QTimer>

#include <QVBoxLayout>
#include <QPushButton>
#include <QDialogButtonBox>
#include <QDialog>
#include <QLineEdit>

#include <QMessageBox>

#include <vector>
using namespace std;

void Http::setRcblvdsIP(const QString &s)
{
 if (rcblvdsIP != s)
 {
 rcblvdsIP = s;
 qDebug() << "rcblvdsIP changed to :" << rcblvdsIP << endl;

 isConnectedToModule = 0; // reset ping counter because of new IP

 emit triggerPings(isConnectedToModule);
 }
}

DSP Wireless, Inc. RCB-LVDS Application Note – AP2

©	DSP	Wireless,	Inc.	2017								 									www.dspw.io	 	 	 	 												

9

Http::Http(QObject *parent) : QObject(parent)
{

 networkRequest.setHeader(QNetworkRequest::ContentTypeHeader,
 "application/x-www-form-urlencoded");
 networkManager = new QNetworkAccessManager(this);

 connect(networkManager, SIGNAL(finished(QNetworkReply*)), &eventLoop,
SLOT(quit()));

 qDebug() << "HttpPost object created";

 /*
 * Find all the active local network interfaces for user to choose from.
 */

 QList<QHostAddress> list = QNetworkInterface::allAddresses();

 qDebug() << list;

 isConnectedToModule = 0;
 emit triggerPings(isConnectedToModule);

 // Set up periodic ping of module to know connectivity
 QTimer *timer = new QTimer(this);
 connect(timer, SIGNAL(timeout()), this, SLOT(pingRcblvdsIP()));
 timer->start(5000);
}

void Http::setDigInBit(int chan)
{
 qDebug() << "Setting Bit " << chan << postToken("__SL_P_UDI", "S" +
QString::number(chan,10));

}

void Http::clrDigInBit(int chan)
{
 qDebug() << "Clearing Bit " << chan << postToken("__SL_P_UDI", "C" +
QString::number(chan,10));

}

QString Http::postToken(const QString &token, const QString &value)
// Post a Token to the rcblvds
{

 if (isConnectedToModule)

DSP Wireless, Inc. RCB-LVDS Application Note – AP2

©	DSP	Wireless,	Inc.	2017								 									www.dspw.io	 	 	 	 												

10

 {

 // Setup the webservice url
 QUrl serviceUrl = QUrl("http://" +rcblvdsIP);
 QByteArray postData;
 QNetworkReply *reply;
 QUrl params;
 QUrlQuery query;
 query.addQueryItem(token, value);

 params.setQuery(query);

 postData = params.toEncoded(QUrl::RemoveFragment);

 // Check to see if previous call has finished
 if (eventLoop.isRunning())
 eventLoop.exit(0);

 reply = networkManager->post(networkRequest,postData);
 return reply->readAll();
 }
 else
 return "No Module";

}

